Entrez medline Query

Other Formats: [Citation Format] [MEDLINE Format]
Links: [1 protein link]

Order this document

Genetics 1996 Jun;143(2):661-71

Suppression analysis reveals a functional difference between the serines in positions two and five in the consensus sequence of the C-terminal domain of yeast RNA polymerase II.

Yuryev A, Corden JL

Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

The largest subunit of RNA polymerase II contains a repetitive C-terminal domain (CTD) consisting of tandem repeats of the consenus sequence Tyr1Ser2Pro3Thr4Ser5Pro6Ser7. Substitution of nonphosphorylatable amino acids at positions two or five of the Saccharomyces cerevisiae CTD is lethal. We developed a selection system for isolating suppressors of this lethal phenotype and cloned a gene, SCA1 (suppressor of CTD alanine), which complements recessive suppressors of lethal multiple-substitution mutations. A partial deletion of SCA1 (sca1 delta ::hisG) suppresses alanine or glutamate substitutions at position two of the consensus CTD sequence, and a lethal CTD truncation mutation, but SCA1 deletion does not suppress alanine or glutamate substitutions at position five. SCA1 is identical to SRB9, a suppressor of a cold-sensitive CTD truncation mutation. Strains carrying dominant SRB mutations have the same suppression properties as a sca1 delta ::hisG strain. These results reveal a functional difference between positions two and five of the consensus CTD heptapeptide repeat. The ability of SCA1 and SRB mutant alleles to suppress CTD truncation mutations suggest that substitutions at position two, but not at position five, cause a defect in RNA polymerase II function similar to that introduced by CTD truncation.

PMID: 8725217, UI: 96363903


the above report in format
documents on this page through Loansome Doc